login
Search: a000203 -id:a000203
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number (> 0) of iterations of sigma (A000203) required to reach a multiple of n when starting with n.
+20
13
1, 2, 4, 2, 5, 1, 5, 2, 7, 4, 15, 3, 13, 3, 2, 2, 13, 4, 12, 5, 2, 13, 16, 2, 17, 4, 9, 1, 78, 7, 10, 4, 17, 11, 6, 5, 28, 22, 4, 7, 39, 2, 16, 16, 16, 10, 32, 5, 13, 17, 9, 3, 58, 11, 19, 5, 13, 67, 97, 2, 23, 5, 16, 2, 4, 8, 101, 21, 19, 11, 50, 4, 20, 20, 23, 14, 21, 10, 36, 5, 15
OFFSET
1,2
COMMENTS
Let sigma^m(n) be result of applying sum-of-divisors function m times to n; sequence gives m(n) = min m such that n divides sigma^m(n).
Perfect numbers require one iteration.
It is conjectured that the sequence is finite for all n.
See also the Cohen-te Riele links under A019276.
a(A111227(n)) > A111227(n). - Reinhard Zumkeller, Aug 02 2012
a(659) > 870. - Michel Marcus, Jan 04 2017
REFERENCES
Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B41, p. 147.
LINKS
Don Reble, Table of n, a(n) for n = 1..1578 (Terms a(1..400) from T. D. Noe, Nov 2007; a(401..659) from Michel Marcus, Jan 02 2017), Feb 20 2022.
G. L. Cohen and H. J. J. te Riele, Iterating the sum-of-divisors function, Experimental Mathematics, 5 (1996), pp. 93-100. See Table 2, p. 95.
Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204.
Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204. [Annotated copy with A-numbers]
Carl Pomerance, On the composition of the functions sigma and phi, Colloq. Math., 59 (1989), 11-15.
Wikipedia, Iterated function, as of Jan 02 2020.
Zeraoulia Rafik, On congruence of the iterated form sigma^k(m) = 0 mod m, arXiv:2102.09941 [math.NT], 2021.
FORMULA
Conjecture: lim_{n -> oo} log(Sum_{k=1..n} a(k))/log(n) = C = 1.6... - Benoit Cloitre, Aug 24 2002
From Michel Marcus, Jan 02 2017: (Start)
a(n) = 1 for n in A007691.
a(n) = 2 for n in A019278 unless it belongs to A007691.
a(n) = 3 for n in A019292 unless it belongs to A007691 or A019278. (End)
EXAMPLE
If n = 9 the iteration sequence is s(9) = {9, 13, 14, 24, 60, 168, 480, 1512, 4800, 15748, 28672} and Mod[s(9), 9] = {0, 4, 5, 6, 6, 6, 3, 0, 3, 7, 7}. The first iterate which is a multiple of 9 is the 7th = 1512, so a(9) = 7. For n = 67, the 101st iterate is the first, so a(67) = 101. Usually several iterates are divisible by the initial value. E.g., if n = 6, then 91 of the first 100 iterates are divisible by 6.
A difficult term to compute: a(461) = 557. - Don Reble, Jun 23 2005
MAPLE
A019294 := proc(n)
local a, nitr ;
a := 1 ;
nitr := numtheory[sigma](n);
while modp(nitr, n) <> 0 do
nitr := numtheory[sigma](nitr) ;
a := a+1 ;
end do:
return a;
end proc: # R. J. Mathar, Aug 22 2016
MATHEMATICA
f[n_, m_] := Block[{d = DivisorSigma[1, n]}, If[ Mod[d, m] == 0, 0, d]]; Table[ Length[ NestWhileList[ f[ #, n] &, n, # != 0 &]] - 1, {n, 84}] (* Robert G. Wilson v, Jun 24 2005 *)
Table[Length[NestWhileList[DivisorSigma[1, #]&, DivisorSigma[1, n], !Divisible[ #, n]&]], {n, 90}] (* Harvey P. Dale, Mar 04 2015 *)
PROG
(PARI) a(n)=if(n<0, 0, c=1; s=n; while(sigma(s)%n>0, s=sigma(s); c++); c)
(PARI) apply( A019294(n, s=n)=for(k=1, oo, (s=sigma(s))%n||return(k)), [1..99]) \\ M. F. Hasler, Jan 07 2020
(Haskell)
a019294 n = snd $ until ((== 0) . (`mod` n) . fst)
(\(x, i) -> (a000203 x, i + 1)) (a000203 n, 1)
-- Reinhard Zumkeller, Aug 02 2012
(Magma) a:=[]; f:=func<n|DivisorSigma(1, n)>; for n in [1..81] do k:=n; s:=1; while f(k) mod n ne 0 do k:=f(k); s:=s+1; end while; Append(~a, s); end for; a; // Marius A. Burtea, Jan 11 2020
CROSSREFS
Cf. A019295 (ratio sigma^m(n)/n), A019276 (indices of records), A019277 (records), A000396.
KEYWORD
nonn,nice
EXTENSIONS
Additional comments from Labos Elemer, Jun 20 2001
Edited by M. F. Hasler, Jan 07 2020
STATUS
approved
Sum of divisors of n, sigma(n) (A000203), is a power of number of divisors of n, d(n) (A000005).
+20
13
1, 3, 7, 31, 127, 217, 889, 2667, 3937, 8191, 27559, 57337, 131071, 172011, 253921, 524287, 917497, 1040257, 1777447, 3670009, 4063201, 11010027, 12189603, 16252897, 16646017, 66584449, 113770279, 116522119, 225735769, 677207307, 1073602561, 2147483647, 3612185689, 4294434817, 7515217927
OFFSET
1,2
COMMENTS
All Mersenne primes (A000668) are terms.
Subsequence of A046528 (product of distinct Mersenne primes). - Michel Marcus, Feb 15 2020
LINKS
EXAMPLE
d(217) = 4; sigma(217) = 256 = 4^4.
MATHEMATICA
spdQ[n_]:=Module[{sd=DivisorSigma[1, n], nd=DivisorSigma[0, n]}, sd == nd^IntegerExponent[sd, nd]]; Join[{1}, Select[Range[2, 226000000], spdQ]] (* Harvey P. Dale, May 02 2012 *)
PROG
(PARI) is(n)=my(t, e=ispower(sigma(n), , &t)); if(!e, return(n==1), nd); nd=numdiv(n); fordiv(e, d, if(t^d==nd, return(1))); 0 \\ Charles R Greathouse IV, Feb 19 2013
(PARI) isA051281(n) = { if(n==1, return(1)); my(sig = sigma(n), ndiv = numdiv(n), v = valuation(sig, ndiv)); (ndiv^v == sig); } \\ Antti Karttunen, Jun 30 2017
CROSSREFS
KEYWORD
nonn,nice
EXTENSIONS
More terms from Jud McCranie
a(30)-a(32) from Donovan Johnson, Oct 03 2012
a(33)-a(35) from Michel Marcus, Feb 14 2020
STATUS
approved
a(n) = 2*n AND A000203(n), where AND is bitwise-and (A004198) and A000203 = sum of divisors.
+20
13
0, 0, 4, 0, 2, 12, 8, 0, 0, 16, 4, 24, 10, 24, 24, 0, 2, 36, 4, 40, 32, 36, 8, 48, 18, 32, 32, 56, 26, 8, 32, 0, 0, 4, 0, 72, 2, 12, 8, 80, 2, 64, 4, 80, 74, 72, 16, 96, 32, 68, 64, 96, 34, 104, 72, 112, 80, 80, 52, 40, 58, 96, 104, 0, 0, 128, 4, 8, 0, 128, 8, 128, 2, 16, 20, 136, 0, 136, 16, 160, 32, 36, 4, 160, 40, 132, 40, 176, 18, 160, 48
OFFSET
1,3
FORMULA
a(n) = A004198(2*n, A000203(n)).
a(n) = A224880(n) - A318466(n) = (A224880(n)-A318467(n))/2.
MATHEMATICA
Array[BitAnd[2 #, DivisorSigma[1, #]] &, 91] (* Michael De Vlieger, Apr 21 2019 *)
PROG
(PARI) A318468(n) = bitand(2*n, sigma(n));
CROSSREFS
Cf. also A318458.
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Aug 26 2018
STATUS
approved
a(n) = A000203(A276086(n)).
+20
13
1, 3, 4, 12, 13, 39, 6, 18, 24, 72, 78, 234, 31, 93, 124, 372, 403, 1209, 156, 468, 624, 1872, 2028, 6084, 781, 2343, 3124, 9372, 10153, 30459, 8, 24, 32, 96, 104, 312, 48, 144, 192, 576, 624, 1872, 248, 744, 992, 2976, 3224, 9672, 1248, 3744, 4992, 14976, 16224, 48672, 6248, 18744, 24992, 74976, 81224, 243672, 57, 171, 228
OFFSET
0,2
FORMULA
a(n) = A000203(A276086(n)).
For n >= 1, a(A002110(n-1)) = 1+A000040(n).
PROG
(PARI)
A276086(n) = { my(i=0, m=1, pr=1, nextpr); while((n>0), i=i+1; nextpr = prime(i)*pr; if((n%nextpr), m*=(prime(i)^((n%nextpr)/pr)); n-=(n%nextpr)); pr=nextpr); m; };
A324653(n) = sigma(A276086(n));
CROSSREFS
Cf. A267263, A276150, A324650, A324655 for omega, bigomega, phi and tau analogs, and also A324654.
Cf. also A324054.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 10 2019
STATUS
approved
Composite squarefree numbers n such that p-tau(n) divides n+sigma(n), where p are the prime factors of n, tau(n) = A000005(n) and sigma(n) = A000203(n).
+20
12
6, 10, 15, 66, 145, 231, 435, 1221, 11571, 99093, 105502, 292434, 449854, 585429, 643858, 968014, 1372494, 1787091, 1939434, 4659114, 5524014, 5654334, 6250371, 6974007, 19495374, 19821714, 28488039, 34701369, 46183893, 81133734, 213352233, 230140869
OFFSET
1,1
COMMENTS
Subsequence of A120944.
LINKS
EXAMPLE
Prime factors of 435 are 3, 5, 29 and sigma(435) = 720, tau(435) = 8.
435 + 720 = 1155 and 1155 / (3 - 8) = -231, 1155 / (5 - 8) = -385, 1155 / (29 - 8) = 55.
MAPLE
with (numtheory); P:=proc(q) local a, b, c, i, ok, p, n;
for n from 2 to q do if not isprime(n) then a:=ifactors(n)[2]; ok:=1;
for i from 1 to nops(a) do if a[i][2]>1 or a[i][1]=tau(n) then ok:=0; break;
else if not type((n+sigma(n))/(a[i][1]-tau(n)), integer) then ok:=0; break; fi; fi; od; if ok=1 then print(n); fi; fi; od; end: P(2*10^6);
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Sep 19 2013
EXTENSIONS
a(21)-a(33) from Giovanni Resta, Sep 20 2013
First term deleted by Paolo P. Lava, Sep 23 2013
STATUS
approved
Composite numbers n sorted by decreasing values of alpha(n) = log_n(sigma(n)) - log_n(n+1), where sigma(n) = A000203(n) = the sum of divisors of n.
+20
12
12, 6, 24, 36, 18, 30, 60, 8, 4, 48, 20, 72, 120, 84, 16, 42, 10, 40, 180, 90, 96, 144, 240, 168, 108, 360, 28, 54, 420, 252, 132, 80, 216, 210, 32, 126, 300, 336, 480, 56, 192, 288, 720, 840, 66, 504, 156, 540, 150, 264, 14, 600, 140, 270, 1260, 432, 78, 1080
OFFSET
1,1
COMMENTS
The number alpha(n) = log_n(sigma(n)) - log_n(n+1) = log_n[sigma(n) / (n+1)] is called the alpha-deviation from primality of number n; alpha(p) = 0 for p = prime. See A234520 for definition of beta(n).
Lim_n->infinity alpha(n) = 0.
Conjecture: Every composite number n has a unique value of alpha(n).
Conjecture: sequence A234517 is not the sequence of numbers from a(n) such that a(n) > a(k) for all k < n.
LINKS
EXAMPLE
For the number 12; alpha(12) = log_12(sigma(12)) - log_12(12+1) = log_12(28) - log_12(13) = 0.308766187… = A234518 (maximal value of function alpha(n)).
PROG
(PARI) lista(nn) = {v = vector(nn, n, if ((n==1) || isprime(n), 0, log(sigma(n)/(n+1))/log(n))); v = vecsort(v, , 5); for (i=1, 80, print1(v[i], ", ")); } \\ Michel Marcus, Dec 10 2014
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jan 03 2014
STATUS
approved
Composite numbers n sorted by decreasing values of beta(n) = sigma(n)^(1/n) - (n+1)^(1/n), where sigma(n) = A000203(n) = the sum of divisors of n.
+20
12
4, 6, 8, 12, 10, 18, 16, 24, 14, 20, 9, 15, 30, 36, 28, 22, 32, 40, 48, 42, 21, 26, 60, 54, 44, 27, 72, 56, 34, 50, 45, 52, 38, 66, 84, 33, 64, 90, 80, 70, 96, 78, 46, 39, 120, 68, 108, 35, 88, 76, 63, 25, 100, 58, 102, 126, 144, 112, 132, 62, 104, 75, 51, 92
OFFSET
1,1
COMMENTS
The number beta(n) = sigma(n)^(1/n) - (n+1)^(1/n) is called the beta-deviation from primality of the number n; beta(p) = 0 for p = prime. See A234516 for definition of alpha(n).
For number 4; beta(4) = sigma(4)^(1/4) - (4+1)^(1/4), = 7^(1/4) - 5^(1/4) = 0,131227780… = A234522 (maximal value of function beta(n)).
Lim_n->infinity beta(n) = 0.
Conjecture: Every composite number n has a unique value of number beta(n).
See A234523 - sequence of numbers a(n) such that a(n) > a(k) for all k < n.
LINKS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jan 14 2014
STATUS
approved
Numbers n such that the sum of their divisors + the number of ones in their binary expansion = 2n; numbers for which A000203(n) + A000120(n) = 2n.
+20
12
1, 2, 3, 4, 8, 10, 16, 32, 64, 128, 136, 256, 315, 512, 1024, 2048, 4096, 8192, 16384, 32768, 32896, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 2147516416
OFFSET
1,2
COMMENTS
Numbers n such that their binary weight is equal to their deficiency.
Numbers n such that A000120(n) = A033879(n), or equally A000203(n) = A005187(n), or equally A001065(n) = A011371(n).
2^(2^k-1) * (2^(2^k) + 1) is in the sequence if and only if (2^(2^k) + 1) is a (Fermat) prime (A019434) which as of today is known to be the case for 0 <= k <= 4 giving the terms 3, 10, 136, 32896 and 2147516416. - David A. Corneth, Nov 26 2017
It would be nice to know whether 315 is the only term that is neither in A191363 nor a power of two.
Any term that is either a square or twice a square (in A028982) must be odious (in A000069), and vice versa.
If there's an odd term below 10^30 besides 315 then it must be divisible by a prime >= 23. - David A. Corneth, Nov 27 2017
221753180448460815 is odd and also a term of this sequence. - Alexander Violette, Dec 24 2020
EXAMPLE
A000203(315) = 1 + 3 + 5 + 7 + 9 + 15 + 21 + 35 + 45 + 63 + 105 + 315 = 624. 2*315 - 624 = 6, and when 315 is written in binary, 100111011, we see that it has six 1-bits. Thus 315 is included in the sequence.
MATHEMATICA
Select[Range[2^20], DivisorSigma[1, #] + DigitCount[#, 2, 1] == 2 # &] (* Michael De Vlieger, Nov 26 2017 *)
PROG
(PARI) for(n=1, oo, if(sigma(n)+hammingweight(n) == 2*n, print1(n, ", ")));
CROSSREFS
Positions of zeros in A294898 and A294899.
Subsequence of A005100 and also of A295298.
Subsequences: A000079, A191363 (the five known terms).
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Nov 26 2017
EXTENSIONS
Terms a(35) and beyond from Giovanni Resta, Feb 27 2020
STATUS
approved
Length of the longest subsequence of 1, ..., n on which sigma, the sum of the divisors of n (A000203), is nondecreasing.
+20
12
1, 2, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 8, 9, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 20, 20, 21, 21, 21, 21, 22, 22, 22, 23, 24, 24, 25, 25, 25
OFFSET
1,2
COMMENTS
The sequence was inspired by A365339. In particular, note remark (4.4) by Terence Tao in the linked paper.
LINKS
FORMULA
a(n+1) - a(n) <= 1.
a(n) >= A000720(n)+1 since A000203(p) = p+1 for p prime. - Chai Wah Wu, Sep 08 2023
PROG
(Python)
from bisect import bisect
from sympy import divisor_sigma
def A365398(n):
plist, qlist, c = tuple(divisor_sigma(i) for i in range(1, n+1)), [0]*(n+1), 0
for i in range(n):
qlist[a:=bisect(qlist, plist[i], lo=1, hi=c+1, key=lambda x:plist[x])]=i
c = max(c, a)
return c # Chai Wah Wu, Sep 08 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Sep 08 2023
STATUS
approved
a(n) = 2*sigma(n) - tau(n), where tau(n) is the number of divisors of n (A000005) and sigma(n) is the sum of divisors of n (A000203).
+20
11
1, 4, 6, 11, 10, 20, 14, 26, 23, 32, 22, 50, 26, 44, 44, 57, 34, 72, 38, 78, 60, 68, 46, 112, 59, 80, 76, 106, 58, 136, 62, 120, 92, 104, 92, 173, 74, 116, 108, 172, 82, 184, 86, 162, 150, 140, 94, 238, 111, 180, 140, 190, 106, 232, 140, 232, 156, 176, 118, 324, 122, 188
OFFSET
1,2
COMMENTS
Row sums of A129234. - Emeric Deutsch, Apr 17 2007
Equals row sums of A130307. - Gary W. Adamson, May 20 2007
Equals row sums of triangle A143315. - Gary W. Adamson, Aug 06 2008
Equals A051731 * (1, 3, 5, 7, ...); i.e., the inverse Mobius transform of the odd numbers. Example: a(4) = 11 = (1, 1, 0, 1) * (1, 3, 5, 7) = (1 + 3 + 0 + 7), where (1, 1, 0, 1) = row 4 of A051731. - Gary W. Adamson, Aug 17 2008
Equals row sums of triangle A143594. - Gary W. Adamson, Aug 26 2008
LINKS
FORMULA
G.f.: Sum_{k>=1} z^k*(k-(k-1)*z^k)/(1-z^k)^2. - Emeric Deutsch, Apr 17 2007
G.f.: Sum_{n>=1} x^n*(1+x^n)/(1-x^n)^2. - Joerg Arndt, May 25 2011
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(2-1/k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 18 2018
a(n) = A222548(n) - A222548(n-1). - Ridouane Oudra, Jul 11 2020
EXAMPLE
a(4) = 2*sigma(4) - tau(4) = 2*7 - 3 = 11.
MAPLE
with(numtheory): seq(2*sigma(n)-tau(n), n=1..75); # Emeric Deutsch, Apr 17 2007
G:=sum(z^k*(k-(k-1)*z^k)/(1-z^k)^2, k=1..100): Gser:=series(G, z=0, 80): seq(coeff(Gser, z, n), n=1..75); # Emeric Deutsch, Apr 17 2007
MATHEMATICA
a[n_] := DivisorSum[2n, If[EvenQ[#], #-1, 0]&]; Array[a, 70] (* Jean-François Alcover, Dec 06 2015, adapted from PARI *)
Table[2*DivisorSigma[1, n]-DivisorSigma[0, n], {n, 80}] (* Harvey P. Dale, Aug 07 2022 *)
PROG
(PARI) a(n)=sumdiv(2*n, d, if(d%2==0, d-1, 0 ) ); /* Joerg Arndt, Oct 07 2012 */
(PARI) a(n) = 2*sigma(n)-numdiv(n); \\ Altug Alkan, Mar 18 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Apr 05 2007
EXTENSIONS
Edited by Emeric Deutsch, Apr 17 2007
STATUS
approved

Search completed in 0.010 seconds